Malcolm K. Jenyon; Albert A. Fitch:
Seismic reflection interpretation

Ed.: N. A. Anstey; P. N. S. O'Brien
1985. XII, 318 pages, 172 figures, 4 plates, 17x24cm, 920 g
Language: English
(Geoexploration Monographs, Number 8)
ISBN 978-3-443-13015-2, bound, price: 50.00 €
in stock and ready to ship

Buy article Order form

BibTeX file
Seismic data gathering uses a wide range of technology derived from the physical sciences to record minute velocity or pressure changes, working in a vast range of environments on the earth’s surface. The interpretation is carried to the point where one can predict what will be found in a well or a mineshaft sunk to a stated depth.

Oil and gas exploration is very successful, and almost every venture depends on seismic interpretation as a step in that process. The coal industry finds some use for seismic work in delimiting the coal basins and in colliery layout. Mineral exploration, civil engineering, and the deep crustal studies are uses of seismic methods.

This book is addressed to all engaged in this work: to the gatherers and processors of seismic data to show the objectives of the interpreter and the impact they have on gathering and processing the data, and on quality control. It is addressed to the geologist to show what can be expected from modern data. It is addressed to seismic interpreters, and to students who wish to follow such a career, most of all.

Some Preliminary Material 1
The 'Black Box' Concept 16
The log of reflection coefficients - Convolution - Transfer function - Earth, recording and processing contributions - Compressional pulse transmission and reflection - Surface materials and their effects - Other models of vibration - Noise - The modification of signal in the recording process - Reduction of reverberants in processing - Improvement of signal-to-noise ratios in processing - Amplitude manipulation - The effects of the 'black box'
Stress-Induced Shapes on the Seismic Cross-Section 27
Part 1: Anticlinal folds - Synclinal folds - Monoclinal folds
Part 2: Fault-associated phenomena - Normal, listric and detachment faults - Reserve faults and thrusts - Strike-slip faults - Diapiric structures - Migration
Sedimentary and Other Shapes on the Section 114
Deltas - Reefs and other carbonate builds - Evaporites - Unconformities and buried topography - Solution collapse structures and Karst features - Synsedimentary structures - growth faults and growth anticlines - Direct hydrocarbon indications - The B.S.R. gas hydrates, the ‘Opal Transition’
Seismic Environments 152
Horizontal and low dip environments - Strongly folded and complex environments - Halokinetic environments - Stratigraphie trap environments - Reactivated environments - Poor response and noisy environments
Techniques of Execution 173
Compilation of available information - Horizon choices and tie points - Reflection timing
Techniques of Presentation 198
Contour maps and contouring - Time isopach maps - Velocities - the basic aspects - Conversion to depth and thickness - Colour displays - Downhole and other geophysical data - Reporting the results - 'Three-dimensional' data - The design of seismic survey grids
Velocity and Amplitude 227
Part 1: The material to be interpreted - Interpretation of stacking velocity - Interval velocity - The interpretation of interval velocity - Velocity and lithology
Part 2: Factors affecting amplitude - Preparation of amplitude data - Interpretation of amplitude change-absorption - Amplitude and thickness - Velocity and lithology - Velocity and porosity - Velocity and fluid content - Velocity and pressure - Velocity and temperature - Shear wave velocity - Vp/Vs - Velocity Interpretation
Some Other Interpretation Techniques 255
Amplitude relationships with the emergent angle - Vertical seismic profile (VSP) - Impedance logs - Frequency domain presentation
Seismic Stratigraphy 258
Sequence analysis - Facies analysis - Reflection shape studies and other techniques
Bibliography, Index 309
minimum phase wavelet = front loaded energy i.e. at time zero minimum energy and elsewhere maximum. zero phase wavelet has maximum energy at time zero.